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Synopsis

One of the confounding issues in laminar flow processing of nematic polymers is the generation of
molecular orientational structures on length scales that remain poorly characterized with respect to
molecular and processing control parameters. For plane Couette flow within the Leslie–Ericksen
continuum model, theoretical results since the 1970s yield two fundamental predictions about the
length scales of nematic distortion: a power law scaling behavior, Er2p, 1

4 < p < 1, where Er is
the Ericksen number~ratio of viscous to elastic stresses!; the exponentp varies according to
whether the structure is a localized boundary layer or an extended structure. Until now, comparable
results which incorporate molecular elasticity~i.e., distortions in the shape of the orientational
distribution! have not been derived from mesoscopic Doi–Marrucci–Greco~DMG! tensor models.
In this paper, we derive asymptotic, one-dimensional gap structures, along the flow-gradient
direction, in ‘‘slow’’ Couette cells, which reflect self-consistent coupling between the primary flow,
in-plane director~nematic! and order parameter~molecular! elasticity, and confinement conditions
~plate speeds, gap height, and director anchoring angle!. We then read off the small Deborah
number, viscoelastic structure predictions: The flow is simple shear. The orientation structures
consist of: two molecular-elasticity boundary layers with the Marrucci scaling Er21/2, which are
amplified by tilted plate anchoring; and a nonuniform, director-dominated structure that spans the
entire gap, with Er21 average length scale, present for any anchoring angle. We close with direct
numerical simulations of the DMG steady, flow-nematic boundary-value problem, first to
benchmark the small Deborah number structure formulas, and then to document onset of new
flow-orientation structures as the asymptotic expansions become disordered. ©2004 The Society
of Rheology. @DOI: 10.1122/1.1626676#
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I. INTRODUCTION

Laminar flow processing of nematic polymer films and molds is plagued by the gen-
eration of molecular orientational structures on length scales that remain poorly under-
stood. These structures impart nonuniform material properties, which are believed to
compromise performance features. Absent of a characterization of nematic mesostruc-
tures with respect to molecular and processing control parameters, e.g., in the form of
structure scaling properties, a systematic study of the mesostructure–material property
relationships cannot even begin.

The experimental documentation of micron-scale textures@cf. Larson and Mead
~1992, 1993!; Donald and Windle~1992!; Burghardt~1998!; Larson ~1999!; the recent
review by Tan and Berry~2003!# has compelled many theoretical and numerical efforts
@cf. the recent review by Rey and Denn~2002!# to explain and simulate the dominant
structure scales. The dimensional analysis of de Gennes~1974!, Marrucci ~1991!, and
Marrucci and Greco~1993! in plane Couette flow, using the continuum Leslie–Ericksen
~LE! theory, produces a similarity length scaleLM ; Er21/2, where Er is the Ericksen
number, which measures viscous effects relative to distortional elasticity. The linearized
analysis of Carlsson~1986! on the LE model characterizes a boundary penetration length
consistent with the Marrucci scaling. Larson~1993!, Larson and Mead~1992, 1993!
focused on roll-cell structures, experimentally and theoretically, which obey power law
behavior between Er21/4 and Er21/2. Important early results included exact solutions
derived by Manneville~1981!, Carlsson~1984!, and the provocative concept of director
turbulence@cf. Cladis and Torza~1976!#.

For nematic polymers, it is necessary to go beyond the LE model and allow for
molecular elasticity as well as nematic director structures.~In terms of the second-
moment orientation tensor, this translates to eigenvalue as well as eigenvector variations.!
Absent of flow or other applied fields, the authors@Forestet al. ~2000, 2001!# derived
families of exact steady-state and traveling-wave solutions of a Doi–Marrucci–Greco
mesoscopic tensor model. These free-space solutions yield a variety of layered and
domain-wall structures, and translate to familiar light-intensity patterns. They are intrin-
sic nematic polymer structures that reflect a balance between the short-range molecular
elasticity potential~of Maier–Saupe form! and the intermediate-range distortional elas-
ticity potential @of Marrucci and Greco~1991!#. Furthermore, these intrinsic states arise
either from optical axis distortions with frozen order parameter values~consistent with a
LE structure!, or from order-parameter-dominated orientational distortions. Lacking an
applied field such as shear flow and absent of confinement conditions such as plate
anchoring, these families of structures have no selection mechanisms, either in which
types of solutions are resonated or in length scales of the structures. It is reasonable to
surmise that local plate anchoring conditions, and local flow type and rate, provide
selection criteria for order-parameter versus director-dominated structure modes, and fur-
thermore, provide local and long-range length-scale selection criteria through stress and
torque balances.

In confined plane Couette cell flows, numerical studies on various mesoscopic Doi–
Marrucci–Greco~DMG! mesoscopic tensor models@Tsuji and Rey~1997!; Sgalariet al.
~2002!; Kupfermanet al. ~2000!# remain inconclusive with respect to the Marrucci scal-
ing or related power law behavior. This is not surprising: the parameter space is too large;
each mesoscopic model corresponds to a different mesoscopic closure approximation of
the Doi kinetic theory@cf. Forest and Wang~2003!#; each model uses a variation on the
Marrucci–Greco distortional elasticity potential; the choices of spatial dimensionality of
both flow and orientation relative to the flow axes vary; and finally, the coupling of flow

176 FOREST ET AL.



versus imposed flow during structure evolution are both explored. Given the added com-
plexity of accurate numerical solvers in confined geometries, comparisons are difficult,
and conclusions regarding structure scaling properties remain elusive.

Given this appraisal, we are motivated toward three goals: to extend de Gennes’ and
Marrucci’s dimensional analysis at the equation level to asymptotic construction of fami-
lies of exact solutions, with flow and confinement providing selection of length scales and
of the structure type~cf. boundary layers versus structures that span the entire shear gap!;
to extend Carlsson’s linearized analysis of plate confinement conditions to fully nonlinear
orientational structure properties and scaling behavior, especially to identify whether
structure length scales inherit dependence on the gap width; and to identify scaling
behavior of the order parameters as well as directors, each free to interact according to
the flow-nematic-confinement balance equations.

We consider a DMG mesoscopic tensor model, allowing a full coupling between flow
structure and director~nematic! & order parameter~molecular! distortions, and with
imposed plate motion and molecular anchoring conditions. The model, based on the Doi
closure, has been benchmarked in the longwave, monodomain regime and small Deborah
number limit with simulations of the Doi kinetic theory at nematic concentrations@Forest
et al. ~2003!#, and the pure nematic equations support the families of inherent structures
noted earlier@Forest et al. ~2000, 2001!#. The effect of closure rule, which strongly
affects monodomain response to shear flow@cf. Forest and Wang~2003!#, will be high-
lighted when we reach the results of our analysis. In short, the structures we predict are
robust to closure, but prefactors vary with the mesoscopic Leslie tumbling parameter,
which varies with closure.

Following Marrucci and Carlsson, we describe one-dimensional spatial structures that
form in the gap between parallel plates moving oppositely at prescribed constant speeds,
with mesoscopic molecular anchoring conditions at the plates. Likewise,we assume an
in-plane orientation tensor and posit that the velocity field varies only along the primary
flow direction. This assumption is not easily lifted; the out-of-plane analysis has thus far
proven unwieldy. The structures and scaling properties we derive here are, therefore, not
applicable to out-of-plane orientation behavior; the spatial analog of out-of-plane director
tipping is a topic of current interest.

From this formulation, we develop a nonlinear asymptotic analysis in the slow-plate
~small Deborah number! limit, which yieldsexactly solvable, steady flow-nematic struc-
tures. From the exact constructions, we simply read off length-scale selection criteria and
structure scaling properties, explicitly in terms of molecular parameters~nematic concen-
tration N, molecule aspect ratior , persistence lengthl of distortional elasticity! and
processing conditions@gap width (2h), plate speeds6v0 , and plate anchoring condi-
tions on the molecular field#.

II. MODEL FORMULATION

We consider planar shear flow between two plates located aty 5 6h, in Cartesian
coordinates (x,y,z), moving with corresponding velocityv 5 (6v0 ,0,0), respectively.
Figure 1 depicts the cross section of the shear flow on the (x,y) plane. Variations in the
direction of flow (x) and primary vorticity direction (z), and transport in the vertical (y)
direction are suppressed. There aretwo apparent length scales: the gap half-widthh and
the persistence lengthl of the distortional elasticity potential of Marrucci and Greco. The
molecular parameterl is the mesoscopic analog of a Frank elasticity constant; we restrict
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here to the one-constant approximation where bend, splay, and twist distortion constants
are presumed equal. There are two obvious time scales in the model: a bulk flow time
scale,

tflow 5
h

v0
, ~1!

and a nematic time scale of average rotational diffusivity,

tnematic5
1

6Dr
. ~2!

One can also form scales associated with solvent viscosity and the three nematic viscosi-
ties, but in the weak flow limit they correspond to higher order effects.

We nondimensionalize the coordinates, variables, model equations, and boundary con-
ditions using the device scaleh, the nematic time-scaletnematic, and a characteristic
stresst0 5 rh2/tnematic

2 , wherer is the liquid density:

x̃ 5
1

h
x, t̃ 5

t

tnematic
, ṽ 5

tnematic

h
v, t̃ 5

t

t0
, p̃ 5

p

t0
. ~3!

The following six dimensionless parameters arise in the flow-nematic equations:

Re 5
t0tnematic

h
, a 5

3ckT

t0
, Er 5

8

N

h2

l 2 , m i 5
3ckTz i

tnematict0
, i 5 1,2,3. ~4!

Re is the solvent Reynolds number; Er is the Ericksen number of the DMG model
consistent with Kupfermanet al. ~2000!, Fenget al. ~2000!; m i ,i 5 1,2, and 3 are three
nematic Reynolds numbers, anda is a normalized entropic parameter (c is a number
density of nematic molecules,k is the Boltzmann constant, andT is absolute tempera-
ture!.

Our scaling inserts the Deborah number De in the flow boundary condition, where we
can efficiently impose the slow plate limit. Sincevx(y 5 6h) 5 6v0
5 h/tnematicṽx( ỹ 5 61), the dimensionless axial velocity at the boundary is the ratio

of the bulk flow ratev0 /h and nematic relaxation rate 6Dr :

uṽx~61!u 5 De 5
v0 /h

6Dr
5

v0 tnematic

h
. ~5!

The latter equality provides another view on the slow plate limit, 0, De ! 1. The
plate velocity condition and nematic time scale define a flow direction scale,Dx

FIG. 1. Plane shear flow geometry. Nonslip boundary conditions for the velocity and boundary anchoring for
the orientation tensor given by the stable nematic rest state are prescribed, with major director anglec0 5 0
shown here. A schematic major director windup is shown across the shearing cell.
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5 v0tnematic, the distance the plates move in the unit timescale of nematic relaxation.
Then, De can be also written as

De 5
Dx

h
, ~6!

which is the reciprocal slope of the standard linear shear velocity streamline picture. The
asymptotic condition 0, De ! 1 asserts the nematic relaxation time scale is much
shorter than the bulk flow timescale, so that the plates move a short distance relative to
the gap half-width over the timescale of molecular relaxation.

We hereafter drop the tilde; on all quantities, using onlydimensionless scales and
variables in all equations, solutions, and figures. We note themolecular aspect ratio rof
spheroidal molecules enters the Doi model through the dimensionless parameter

a 5
r221

r211
.

The balance of linear momentum, stress constitutive equation, continuity equation, and
the equation for the orientation tensor are

dv

dt
5 ¹•~2pI1t!,

t 5 S 2

Re
1m3DD1aaF~Q!1

aa

3ErH DQ:QS Q1
I

3D 2
1

2
~DQQ1QDQ!2

1

3
DQJ

1
a

3ErH 1

2
~QDQ2DQQ!2

1

4
~¹Q:¹Q2¹¹Q:Q!J

1m1H S Q1
I

3D D1DS Q1
I

3D J 1m2D:QS Q1
I

3D ,

¹•v 5 0,

d

dt
Q 5 VQ2QV1a @DQ1QD#1

2a

3
D22aD:QS Q1

I

3D
2

1

L H F~Q!1
1

3ErFDQ:QS Q1
I

3D 2
1

2
~DQQ1QDQ!2

1

3
DQG J , ~7!

where

F~Q! 5 ~12N/3!Q2NQ21NQ:Q~Q1I /3!, ~8!

L 5 H1, with constant rotary diffusivity

S 12
3

2
Q:QD 2

, with orientation-dependent rotary diffusivity.
~9!

The boundary conditions for the scaled axial velocityvx are

vx~y 5 61! 5 6De. ~10!
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We assumehomogeneous mesophase anchoring at the plates, given by the quiescent
stable nematic equilibrium,

Quy 5 61 5 s0S nn2
I

3D ,

s0 5
1

4
S113A12

8

3N
D , ~11!

wheres0 is the stable uniaxial order parameter specified by the nematic concentration
N . 8

3, and n is the equilibrium uniaxial director, assumed to lie in the shear plane
~flow–flow gradient plane! at some experimentally dictatedanchoring anglec0 with
respect to the flow direction,

n 5 ~cosc0,sinc0,0!. ~12!

The anchoring angle will appear prominently in the results below; plate preparations
yield tangential (c0 5 0), homeotropic (c0 5 p/2), or tilted (0 , c0 , p/2) an-
choring.

We consider the in-plane mesophase orientation of LCPs with two directors ofQ
confined to the shearing plane (x,y), but still admitting biaxiality. This constraint implies
that two components in the matrix representation ofQ must vanish,Qxz 5 Qyz 5 0.
Alternatively, the orientation tensor can be written in terms of directors and order param-
eters:

Q 5 s~y,t !S nn2
I

3D 1b~y,t !S n'n'2
I

3D , ~13!

with the directorsn,n' confined to the (x,y) plane and parametrized by the in-plane
Leslie anglec(y,t),

n 5 ~cosc, sinc,0!, n' 5 ~2sinc,cosc,0!. ~14!

The third director is rigidly constrained along the vorticity axis.
The explicit coordinate change between theseQ representations is

Qxx 5 s~cos2 c2 1
3!1b~sin2 c2 1

3!,

Qxy 5 ~s2b!sinc cosc,

Qyy 5 s~sin2 c2 1
3!1b~cos2 c2 1

3!. ~15!

The Jacobian of the mapping (s,b,c) → (Qxx ,Qxy ,Qyy) is ](Qxx ,Qxy ,Qyy)/
](s,b,c) 5 (b2s)/3. Unlesss2b 5 0, which is a uniaxial limit, the mapping is non-
singular. We shall switch between these representations to extract properties of the ori-
entation tensor.

With the biaxial representation~13! of Q, the tensor equation in Eq.~7! can be written
in terms of the order parameters (s,b) and the Leslie anglec:
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]s

]t
5 2

1

L HU~s!1
2N

3
sb~11b2s!1

2

9Er
~s2b!g~s,b!S ]c

]y D 2

1
1

9ErF2~12s!~12b12s!
]2s

]y2 1s~12s12b!
]2b

]y2G J 1
a

3

]vx

]y
g~s,b!sin 2c,

]b

]t
5 2

1

L HU~b!1
2N

3
sb~11s2b!1

2

9Er
~b2s!g~b,s!S ]c

]y D 2

1
1

9ErFb~12b12s!
]2s

]y2 2~12b!~12s12b!
]2b

]y2G J 2
a

3

]vx

]y
g~b,s!sin 2c,

]c

]t
5

1

6~s2b!
H]vx

]y
@3b23s1a~21s1b!cos 2c#

1
1

3ErL
~21s1b!F ~s2b!

]2c

]y2 12
]c

]y S ]s

]y
2

]b

]y D G J , ~16!

where

U~s! 5 sF12
N

3
~12s!~2s11!G, ~17!

g~s,b! 5 113sb2b12s23s2. ~18!

The momentum equation reduces to a single equation for the velocity componentvx ,

]vx

]t
5

]txy

]y
,

txy 5
aa

2 FU~s!2U~b!1
4Nsb

3
~b2s!Gsin 2c1

aa

18ErF2h~s,b!
]2s

]y2 1h~b,s!
]2b

]y2

12~s2b!@g~s,b!1g~b,s!#S ]c

]y D 2Gsin 2c1
aa

18Er
~s1b12!F ~b2s!

]2c

]y2

22S ]s

]y
2

]b

]y D ]c

]y Gcos 2c1
a

6Er
~s2b!F ~s2b!

]2c

]y2 12S ]s

]y
2

]b

]y D ]c

]y G
1Fm1

6
~s1b12!1

m2

8
~s2b!2~12cos 4c!1

1

Re
1

m3

2 G ]vx

]y
, ~19!

where

h~s,b! 5 ~12b12s!~11b2s!. ~20!

We seek steady solutions of the dimensionless governing Eqs.~16!–~20! subject to the
boundary conditions

vxuy 5 61 5 6De, suy 5 61 5 s0 , buy 5 61 5 0, cuy 5 61 5 c0 . ~21!
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We posit a formal asymptotic expansion in the small De number limit, consistent with the
above boundary conditions:

vx 5 (
k 5 1

`

vx
(k)~y!Dek, c 5 (

k 5 0

`

c (k)~y!Dek,

s 5 (
k 5 0

`

s(k)~y!Dek, b 5 (
k 5 1

`

b (k)~y!Dek. ~22!

Alternatively, the Cartesian representation ofQ is expanded in the form:

Q 5 (
k 5 0

`

Q(k)~y!Dek, ~23!

with Q(0) a quiescent, homogeneous equilibrium given by Eq.~11!. c (1), s(1), b (1) and
the components ofQ(1) are explicitly related by

c(1) 5
2Qxy

(1) cos 2c02~Qxx
(1)2Qyy

(1)!sin 2c0

2s
,

s(1) 5 3
2~Qxx

(1)1Qyy
(1)!1 1

2~Qxx
(1)2Qyy

(1)!cos 2c01Qxy
(1) sin 2c0,

b(1) 5 3
2~Qxx

(1)1Qyy
(1)!2 1

2~Qxx
(1)2Qyy

(1)!cos 2c02Qxy
(1) sin 2c0. ~24!

Notice that the anchoring conditions at the two moving plates are assumed identical,
which presumes the shear cell begins from a quiescent, homogeneous, nematic equilib-
rium. This is consistent with tangential and normal anchoring conditions, and with tilted
anchoring conditions if the plates are prepared so that the anchoring angles are equal
rather than opposite sign. Different conditions at each plate require a non-homogeneous
steady structure at leading order, which we will not pursue for this study.

A. Exact steady asymptotic structures

From either representation ofQ, the above expansions are inserted into the full system
of flow-nematic equations, Eqs.~7!–~9! or ~16!–~18!, equations for theO(De) and
O(De2) variables derived, and then systematically solved. We now state the results,
following the notation in expansions~22! and ~23!.

• The axial velocityat O(De), vx
(1) , reproduces the simple shear structure:

vx
(1) 5 y. ~25!

This result gives some justification to the historical practice of imposing pure shear
flow kinetics even in spatially non-uniform flows@Tsuji and Rey~1997!; Rey and Denn
~2002!# in order to decouple the momentum equation. For asymptotically ordered,
in-plane structures in the low De limit, all nonlinearity in the flow profile is a pertur-
bation of pure shear. We will return in the numerical section to onset of nonlinear flow
profiles as the asymptotic solutions become invalid.

• The orientation tensor atO(De), Q(1), decomposes into one extended structure that
spans the entire gap and two boundary layer structures that are localized at the plates:
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Q(1) 5 Er~y221!Q11S cosh~Er1/2By!

cosh~Er1/2B!
21D Q21S cosh~Er1/2Dy!

cosh~Er1/2D !
21D Q3 , ~26!

where

Q1 5 2
3a

2lL
~12lL cos 2c0!S sin 2c0 cos 2c0 0

cos 2c0 2sin 2c0 0

0 0 0
D, ~27!

Q2 5
a~12s0!2~112s0!

36s0
sin 2c0S12cos 2c0 2sin 2c0 0

2sin 2c0 11cos 2c0 0

0 0 22
D, ~28!

Q3 5 2
a~4s021!

4N~3N28!s0
sin 2c0S113 cos 2c0 3 sin 2c0 0

3 sin 2c0 123 cos 2c0 0

0 0 22
D, ~29!

with a the molecular geometry parameter, and the constantsB,D,lL are given by

lL 5
a~21s0!

3s0
, ~30!

B 5 3A Ns0

12s0
, ~31!

D 5 BA 4s021

3~112s0!
. ~32!

The parametersB and D are O(1) constants, uniquely prescribed by the nematic
concentrationN; recall s0 5 s0(N) from Eq. ~11!, where 1

4 , s0 , 1 for 8
3 , N

, `.
The (y221) term proportional to the tensorQ1 corresponds to an extended, nonuni-

form structure that spans the entire shear gap, which we call apermeation structureby
contrast with theboundary layer structuresproportional toQ2 andQ3 , which are highly
localized at the plates. In the sections below we decomposeQ1 , Q2 , and Q3 into
directors and order parameters in order to extract nematic and molecular elasticity scaling
properties.

The parameterlL is themesoscopic Leslie tumbling parametercorresponding to the
Doi closure of kinetic theory@Kuzuu and Doi~1983, 1984!; Marrucci ~1991!; Marrucci
and Greco~1993!; Forest and Wang~2003!; Forestet al. ~2003!#. The Leslie parameter
traditionally arises as the critical bulkdynamical diagnostic@Doi and Edwards~1986!;
Beris and Edwards~1994!; Larson~1999!#. If one were to close the Doi kinetic theory on
second moments by use of other closure rules, e.g., Hinch and Leal~1972!, Tsuji and Rey
~1997!, de Gennes and Prost~1993!, Maffettoneet al. ~2000!, the parameterlL encodes
the primary effect of closure rule on stationary spatial in-plane structures at lowDe.

For any closure,the prefactor(12lL cos 2c0) implies a remarkable temporal-to-
spatial transference mechanismassociated with the permeation structure. Flow-alignment
in time ~i.e., ulLu . 1) leads to a tendency toward suppression of, whereas tumbling
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bulk dynamics~i.e., ulu , 1) promotes, this bulk spatial mode~since (12lL cos 2c0) is
bounded away from zero!. This result is the mesoscopic theory analog of Marrucci’s
analysis of the LE steady structures, where the Leslie tumbling parameter also arises
@Marrucci ~1991!#.

The critical role ofc0 , the plate anchoring angle, is apparent inboth boundary-layer
tensorsQ2 and Q3 , which vanish for tangential(c0 5 0) or normal (c0 5 p/2) an-
choring. Thus, these exact constructions implyan arbitrary pre-tilt of c0 away from the
flow or flow-gradient directions will amplify boundary layers of strength equal to the
nonlocal extended structure proportional toQ1 . This nonlocal structure, on the other
hand, can be suppressed only if the nematic polymer is ‘‘flow-aligning,’’ i.e.,lL . 1,
Eq. ~30!, and then by preparing the plate anchoring condition precisely parallel to the
Leslie alignment angle,c0 5 1

2 cos21(1/lL).

B. Director structure

In continuum LE theory, all elasticity is projected into the major director. The first
consequence of these exact mesoscopic solutions is quite striking:the director is seen to
only participate in the long-range extended structure and to not vary in the boundary
layers. From Eq.~24!, the director anglec is explicitly given by

c 5 c01Dec (1)1O~De2!,

c(1) 5 ErM ~y221!,

M@a,s0~N!,c0# 5
9

2~21s0!
@12lL cos~2c0!#. ~33!

By inference, the confinement-induced boundary layer structures are, therefore, respon-
sible only for focusing of the orientational distribution. Indeed, one can confirm this
result by observing the tensorsQ2 and Q3 , Eqs. ~28! and ~29!, have major director
parallel to the anchoring direction.

To extract a length scale from Eq.~33!, one easily calculates the number of nematic
layers across the gap, i.e., the number of rotations of the director byp, @Dc/p#, which is
proportional to Er•De•M, where@•# denotes the greatest integer function. It follows that
the average nematic layer length scale is proportional to(DeMEr)21, which is the
square of the Marrucci scaling.

The value of the prefactorM (a,N,c0) affects the number of layersand the chirality
of director windup. IfM . 0, the major director rotates clockwise from the top plate to
the midgapy 5 0, then ‘‘unwinds’’ counterclockwise fromy 5 0 to the bottom plate. If
M , 0, the directors reverse chirality. By changing the molecules from rods (a
. 0) to platelets (a , 0), and by varyingc0 , it is possible to achieveM of either

sign, thereby reversing the direction of rotation.
For flow-aligning nematic polymers in weak shear, ulLu . 1, two effects are de-

duced. First,M may be positive or negative, and indeedM [ 0 if c0 matches the Leslie
alignment angle, 1/2 cos21(1/lL). This result is quite natural: the long-range permeation
structure may be completely suppressed if one preconditions the plates to match the
shear-alignment angle of the nematic polymer.

For tumbling nematic polymers, ulLu , 1, one findsM . 0 and bounded away
from zero, implying enhanced layering and smaller lengthscales of director rotation. This
result is also natural: a tumbling nematic polymer cannot resist generation of spatial
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director distortions no matter what the plate anchoring condition is, since the material has
no preferred angle to resonate with.

C. Order parameter structure

We now extract degree and scales of molecular elasticity induced by slow Couette
cells. The striking feature is extreme sensitivity to anchoring angle. From thes, b for-
mulas, Eq.~24!, and theQ tensor formulas~26!–~32!, it follows thats(1) andb (1) vanish
if and only if c0 5 0, p/2 ~modp!. We then carry the expansion to next order~omitted!
and find:

1. Tangential anchoring „c0Ä0…

Order parameter distortions enter atO(De2) through two boundary layers and the
long-range permeation structure:

s 5 s01De2s(2)1O~De3!,

b 5 De2b (2)1O~De3!,

s(2) 5 FB1Er~y221!1B2 S cosh~Er1/2Dy!

cosh~Er1/2D !
21D 2B3S cosh~Er1/2By!

cosh~Er1/2B!
21D G ,

b(2) 5 FB4Er~y221!22B3S cosh~Er1/2By!

cosh~Er1/2B!
21D G , ~34!

where

B1 5 2
9~lL21!~3lL22!~12s0!~517s0!

N ~21s0!2~4s021!
,

B2 5
243

N2~21s0!2~4s021!
S Er~lL21!21

~3lL22!~lL21!

N2s0~4s021!
D ,

B3 5
9~12s0!

N ~21s0!2
SEr~lL21!21

~3lL22!~lL21!~12s0!

9Ns0
D ,

B4 5
9~lL21!~3lL22!~12s0!

N~21s0!2
. ~35!

Combined with the director results, Eq.~33!, we conclude thattangential anchoring
leads to a director-dominated, non-uniform, long-range structure withEr21 mean scal-
ing, together with weak, order-parameter modulations on bothEr21/2 and Er21 scales.

2. Normal (homeotropic) anchoring „c0ÄpÕ2…

The structure model~16!–~21! for in-plane Q tensors admits a symmetry: (a,c)
→ (2a, p/21c). This property implies the asymptotic solution withc0 5 p/2 can be

obtained directly from Eqs.~34! and ~35!. Thus normal and tangential anchoring are
quantitatively different, with changes in numerical prefactors, yet qualitatively similar
scaling laws. The figures will illustrate these features.
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3. Tilted anchoring „0 Ë c0 Ë pÕ2 or pÕ2Ë c0 Ë p…

The results above forc0 5 0, p/2 are quite special, as evident from the boundary
layer tensorsQ2 andQ3 , formulas~28! and~29!. Any pretilt induces an order parameter
response of the same amplitude, O(De), as the director distortion, yet localized in the
two boundary layers:

s 5 s01Des(1)1O~De2!,

b 5 Deb (1)1O~De2!, ~36!

where@with B andD given above in Eqs.~31! and ~32!#

s(1) 5 asin 2c0FA1Scosh~Er1/2By!

cosh~Er1/2B!
21D 2A2S cosh~Er1/2Dy!

cosh~Er1/2D !
21D G ,

b(1) 5 2asin 2c0FA1Scosh~Er1/2By!

cosh~Er1/2B!
21D G ,

A1 5
12s0

6N s0
. 0, A2 5

9

2N2s0~4s021!
. 0. ~37!

This result is suggestive of a fundamental flow-nematic structure mechanism. When a
solid boundary or even a defect structure pins the major director at an angle tilted with
respect to the flow–flow gradient axes, molecular elasticity is amplified in a local bound-
ary layers.

D. Penetration depth due to plate anchoring

All asymptotic results, once translated into dimensional gap heighty, imply all tensor
distortions, Eqs.~26!–~35!, have local boundary layer and long-range structure scales that
are independent of the gap separation scale2h. Therefore, there appears to be no
‘‘memory’’ of the gap width in the slow-plate scaling properties. This prediction confirms
the linearized predictions of Carlsson~1986!, and available experimental evidence as
discussed by Larson~1999!.

III. NUMERICAL RESULTS

Figure 1 depicts the plane shear flow geometry. For the reported computations, we fix
a concentration in the nematic regimeN 5 6 and fix the aspect ratior 5 3 ~i.e., a
5 0.8), consistent with our complementary studies of the monodomain dynamics prob-

lem @Forest and Wang~2003!; Forest et al. ~2003!#. Figures 2–5 compare the exact
formulas for the director anglec, order parameterss andb, and flow velocityvx , with
direct numerical solutions of the steady, two-point boundary-value problem. Figure 5 also
gives shear stress and light scattering intensity predictions.@Selected results are further
compared with numerical integration of the full space-time model~7!–~14!, restricted to
in-planeQ tensors. All reported steady numerical solutions are stable under these restric-
tions.#

We begin with confirmation of the formulas for 0, De ! 1 and 0 , De•Er
! 1, Fig. 2, where the asymptotic formulas are nearly identical to the numerical solu-

tions. For tangential and normal anchoring, we setDe 5 0.1, Er 5 1; for tilted anchor-
ing, c0 5 p/6, we have to lower De5 0.01 with the same Er5 1 to maintain agree-
ment between the asymptotic formulas and the numerical solutions. These structures
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further illustrate subtle effects ofc0-dependent numerical prefactors on the order param-
eters: the boundary layer modes mayalign with @c0 5 0, p/6; Figs. 2~a!–2~d!# or op-
pose@c0 5 p/2; Figs. 2~e! and 2~f!# the permeation structure. In the latter scenario, a
secondary length scale emerges due to the superposition.

FIG. 2. Comparison of the numerical solutions~circles/triangles! of the steady boundary-value problem and the
exact asymptotic formulas~solid/dashed lines!. Top row: tilted anchoring (c0 5 p/6) with De5 0.01 and
Er 5 1. Middle row: parallel anchoring (c0 5 0) with De5 0.1 and Er5 1. Bottom row: normal anchoring
(c0 5 p/2) with De5 0.1 and Er5 1. In all figures, circles and solid lines use the left~vertcal! axis; triangles
and dashed lines use the right axis.
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Next, we illustrate breakdown of the asymptotic formulas with direct numerical solu-
tions wheneither of the two asymptotic conditions, De! 1 and Er•De ! 1, are gradu-
ally pushed out of the asymptotic regime. Our purpose here is tomonitor emergence of
new, non-asymptotic structures, and to identify sources of additional scaling behavior.

FIG. 3. Comparison of the numerical solutions~circles/triangles! of the steady boundary-value problem and the
exact asymptotic formulas~solid/dashed lines!. Top row: tilted anchoring (c0 5 p/6) with De5 0.1 and Er
5 1. Middle row: parallel anchoring (c0 5 0) with De5 0.1 and Er5 10. Bottom row: normal anchoring

(c0 5 p/2) with De5 0.1 and Er5 10.
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Figure 3 imposes tangential@~c! and ~d!# and normal anchoring@~e! and ~f!# with
De 5 0.1, Er 5 10. The asymptotic formulas still agree to within errors ofO(De2), yet
one finds the emergence of nonlinear velocity structure not captured by the asymptotic
formulas. Qualitatively distinct velocity structures are generated for tangential versus
normal anchoring. Tangential anchoring yields a local Deborah number,]vx /]y, that is
greater in the plate boundary layers, and lower near the midplane, than the plate-imposed,
gap average De5 0.1. This suggests a resonant velocity structure with power law
yp,p . 1, p odd. Normal@Fig. 3~f!# and tilted@Fig. 3~b!# anchoring generate the oppo-
site concavity in the flow velocity with apparent power law of the formy1/p, p . 1, p
odd. Figure 4 highlights the stark contrast in local De between tangential and normal
anchoring for an otherwise identical experiment, extracted from the numerical velocity
data of Figs. 3~d! and 3~f!.

For tilted anchoring, Figs. 3~a! and 3~b!, a more stringent Er•De condition is needed
for asymptotic agreement, withDe 5 0.1, Er 5 1. One finds quantitative asymptotic
accuracy, but qualitatively the asymptotic formulas fail to resolve shorter lengthscale
structure in the order parameters and velocity, while overestimating the amplitudes of all
orientation variables.

In Figs. 5~a! and 5~b!, we raise the plate speeds (De 5 0.5) by a factor of 5 from Fig.
3, with Er 5 10 ~for which De•Er 5 5), and present results only with parallel anchor-
ing. Correlated boundary layers are spawned amongvx and both order parameters,
totally missed by the asymptotic formulas. The numerical solutions convey aninterior,
director-dominated orientation structure, with almost stagnant flow~local De! 1) and
nearly constant order parameters.Near the plates, the flow velocity rapidly transitions to
the plate speed, with corresponding high local De, and strong molecular elasticity re-
flected in the order parameter structure.

We close with predictions ofshear-gap stresses@Fig. 5~c!# andlight intensity patterns
@Fig. 5~d!# associated with these steady structures. The first normal stress difference
appears to correlate with the maximum birefringence parameter,s, with a positive, maxi-
mumN1 at the plates, then a sharp boundary layer transition leads to asign changeof N1
in the boundary layers, then a nearly constantN1 ' 0, yet negative, across the gap
interior. On the other hand,N2 appears to correlate with the second birefringence param-

FIG. 4. Comparison ofdvx /dy, which defines a local Deborah number across the plate gap, for parallel
anchoring (c0 5 0) and normal anchoring (c0 5 p/2) for De5 0.1 and Er5 10. These data are postpro-
cessed from the numerical solutions of the steady boundary-value problem. Note the mean Deborah number
across the gap is precisely De, so these structures convey the nematic polymer feedback to the flow.
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eter,b, also with sharp boundary layers near the plates with2 sign changesof N2 in Fig.
5~d!. Even in the asymptotic regime~figure not shown!, both N1 and N2 change sign
across the plate gap, so that boundary measurements ofN1 , N2 in steady state are not
indicative of internal stress profiles. The relationship between these locked-in stress pro-
files and mechanical properties of nematic polymer films poses an intriguing challenge.

The light scattering intensity across the plate gap associated with the numerical solu-
tions is given in Fig. 5~d!. This intensity pattern can be viewed as a combination of pure
nematic patterns of the Doi–Marrucci–Greco theory, Forestet al. ~2000, 2001!, where
the flow coupling has led to selection of order-parameter structures near the plates and
director structures in the interior.

IV. CONCLUSION

The goals met in this paper are twofold:~i! to extend analytical descriptions of struc-
ture scaling laws to include molecular elasticity~order parameter variations! and flow of

FIG. 5. Top row: Comparison of the numerical solutions~circles/triangles! of the steady boundary-value
problem and the exact asymptotic formulas~solid/dashed lines! for parallel anchoring (c0 5 0) with De
5 0.5 and Er5 10. Bottom row: Rheological structure profiles associated with the numerical results of the top

row. Here, we provide the first (N1 5 t112t22) and second (N2 5 t222t33) normal stress differences, the
shear stress (t12), and the light scattering intensity function@Matheret al. ~1997!#, I 5 I 0 sin2(2pa1s), across
the plate gap, wherea1 is the ratio of the sample thickness to the wavelength of incident light. The normalized
birefringences measures the difference between orientation along the flow direction and along the vorticity
axis.
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nematic polymers, in a self-consistent steady balance with nematic~director! elasticity;
and~ii ! to document nonasymptotic, yet parametrically controllable, additional structures
that emerge as one pulls out of the asymptotic regime. These results serve as a guide for
extended numerical studies. Analytically at low De and De•Er, the mesoscopic DMG
theory predicts that the Marrucci Er21/2 scaling is associated with boundary layer modes
residing only in the order parameters, whereas an Er21 mean scaling law appears in
non-uniform permeation structures~spanning the entire plate gap!. The self-consistent,
leading order, flow velocity is a pure linear shear profile. Three incommensurate orien-
tation tensor structures are derived, which together form a source of multiple scales and
texture even in the slow flow, small Ericksen number limit.

We confirm the asymptotic formulas with direct numerical simulation of the steady,
flow-nematic boundary-value problem of the Doi–Marrucci–Greco model. Pursuant to
the question of structures that arise in general flows, we then monitor the breakdown of
the asymptotic predictions due to increased plate speed. An intriguing correlation
emerges between the molecular plate anchoring conditions and the macroscopic feature
of concavity of the flow profile across the entire plate gap. Tangential anchoring leads to
a sharp flow gradient near the plates and an interior layer of relatively stagnant flow,
whereas any director tilt away from the flow direction reverses concavity of the steady-
state flow profile, with a nearly plug-flow layer at each plate and an internal layer with a
stronger flow-gradient. These features are controllable either by raising the plate speeds
~De! or by promoting distortional versus short-range elasticity~Er!, although a systematic
study of nonasymptotic scaling behavior remains.
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